Приложение 1 к основной образовательной программе среднего общего образования МИНИСТЕРСТВО ПРОСВЕЩЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Министерство образования и молодёжной политики Свердловской области МОУО МО Красноуфимский округ МАОУ "Тавринская СОШ" ПРИНЯТО решением методического объединения учителей__________________________ протокол от 27.08.2024 № 1 СОГЛАСОВАНО: Зам.дир.по УР _В.В.Дружинина 27.08.2024г. РАБОЧАЯ ПРОГРАММА (ID 5682691) учебного предмета «Геометрия. Углубленный уровень» для обучающихся 10 – 11 классов с.Русская Тавра, 2024 СОДЕРЖАНИЕ ОБУЧЕНИЯ 10 КЛАСС Прямые и плоскости в пространстве Основные понятия стереометрии. Точка, прямая, плоскость, пространство. Понятие об аксиоматическом построении стереометрии: аксиомы стереометрии и следствия из них. Взаимное расположение прямых в пространстве: пересекающиеся, параллельные и скрещивающиеся прямые. Признаки скрещивающихся прямых. Параллельность прямых и плоскостей в пространстве: параллельные прямые в пространстве, параллельность трёх прямых, параллельность прямой и плоскости. Параллельное и центральное проектирование, изображение фигур. Основные свойства параллельного проектирования. Изображение фигур в параллельной проекции. Углы с сонаправленными сторонами, угол между прямыми в пространстве. Параллельность плоскостей: параллельные плоскости, свойства параллельных плоскостей. Простейшие пространственные фигуры на плоскости: тетраэдр, параллелепипед, построение сечений. Перпендикулярность прямой и плоскости: перпендикулярные прямые в пространстве, прямые параллельные и перпендикулярные к плоскости, признак перпендикулярности прямой и плоскости, теорема о прямой перпендикулярной плоскости. Ортогональное проектирование. Перпендикуляр и наклонные: расстояние от точки до плоскости, расстояние от прямой до плоскости, проекция фигуры на плоскость. Перпендикулярность плоскостей: признак перпендикулярности двух плоскостей. Теорема о трёх перпендикулярах. Углы в пространстве: угол между прямой и плоскостью, двугранный угол, линейный угол двугранного угла. Трёхгранный и многогранные углы. Свойства плоских углов многогранного угла. Свойства плоских и двугранных углов трёхгранного угла. Теоремы косинусов и синусов для трёхгранного угла. Многогранники Виды многогранников, развёртка многогранника. Призма: n-угольная призма, прямая и наклонная призмы, боковая и полная поверхность призмы. Параллелепипед, прямоугольный параллелепипед и его свойства. Кратчайшие пути на поверхности многогранника. Теорема Эйлера. Пространственная теорема Пифагора. Пирамида: nугольная пирамида, правильная и усечённая пирамиды. Свойства рёбер и боковых граней правильной пирамиды. Правильные многогранники: правильная призма и правильная пирамида, правильная треугольная пирамида и правильный тетраэдр, куб. Представление о правильных многогранниках: октаэдр, додекаэдр и икосаэдр. Вычисление элементов многогранников: рёбра, диагонали, углы. Площадь боковой поверхности и полной поверхности прямой призмы, площадь оснований, теорема о боковой поверхности прямой призмы. Площадь боковой поверхности и поверхности правильной пирамиды, теорема о площади усечённой пирамиды. Симметрия в пространстве. Элементы симметрии правильных многогранников. Симметрия в правильном многограннике: симметрия параллелепипеда, симметрия правильных призм, симметрия правильной пирамиды. Векторы и координаты в пространстве Понятия: вектор в пространстве, нулевой вектор, длина ненулевого вектора, векторы коллинеарные, сонаправленные и противоположно направленные векторы. Равенство векторов. Действия с векторами: сложение и вычитание векторов, сумма нескольких векторов, умножение вектора на число. Свойства сложения векторов. Свойства умножения вектора на число. Понятие компланарные векторы. Признак компланарности трёх векторов. Правило параллелепипеда. Теорема о разложении вектора по трём некомпланарным векторам. Прямоугольная система координат в пространстве. Координаты вектора. Связь между координатами вектора и координатами точек. Угол между векторами. Скалярное произведение векторов. 11 КЛАСС Тела вращения Понятия: цилиндрическая поверхность, коническая поверхность, сферическая поверхность, образующие поверхностей. Тела вращения: цилиндр, конус, усечённый конус, сфера, шар. Взаимное расположение сферы и плоскости, касательная плоскость к сфере. Изображение тел вращения на плоскости. Развёртка цилиндра и конуса. Симметрия сферы и шара. Объём. Основные свойства объёмов тел. Теорема об объёме прямоугольного параллелепипеда и следствия из неё. Объём прямой и наклонной призмы, цилиндра, пирамиды и конуса. Объём шара и шарового сегмента. Комбинации тел вращения и многогранников. Призма, вписанная в цилиндр, описанная около цилиндра. Пересечение сферы и шара с плоскостью. Касание шара и сферы плоскостью. Понятие многогранника, описанного около сферы, сферы, вписанной в многогранник или тело вращения. Площадь поверхности цилиндра, конуса, площадь сферы и её частей. Подобие в пространстве. Отношение объёмов, площадей поверхностей подобных фигур. Преобразование подобия, гомотетия. Решение задач на плоскости с использованием стереометрических методов. Построение сечений многогранников и тел вращения: сечения цилиндра (параллельно и перпендикулярно оси), сечения конуса (параллельные основанию и проходящие через вершину), сечения шара, методы построения сечений: метод следов, метод внутреннего проектирования, метод переноса секущей плоскости. Векторы и координаты в пространстве Векторы в пространстве. Операции над векторами. Векторное умножение векторов. Свойства векторного умножения. Прямоугольная система координат в пространстве. Координаты вектора. Разложение вектора по базису. Координатно-векторный метод при решении геометрических задач. Движения в пространстве Движения пространства. Отображения. Движения и равенство фигур. Общие свойства движений. Виды движений: параллельный перенос, центральная симметрия, зеркальная симметрия, поворот вокруг прямой. Преобразования подобия. Прямая и сфера Эйлера. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ «ГЕОМЕТРИЯ» (УГЛУБЛЕННЫЙ ОБЩЕГО ОБРАЗОВАНИЯ ОСВОЕНИЯ УЧЕБНОГО КУРСА УРОВЕНЬ) НА УРОВНЕ СРЕДНЕГО ЛИЧНОСТНЫЕ РЕЗУЛЬТАТЫ 1) гражданское воспитание: сформированность гражданской позиции обучающегося как активного и ответственного члена российского общества, представление о математических основах функционирования различных структур, явлений, процедур гражданского общества (выборы, опросы и другое), умение взаимодействовать с социальными институтами в соответствии с их функциями и назначением; 2) патриотическое воспитание: сформированность российской гражданской идентичности, уважения к прошлому и настоящему российской математики, ценностное отношение к достижениям российских математиков и российской математической школы, использование этих достижений в других науках, технологиях, сферах экономики; 3) духовно-нравственное воспитание: осознание духовных ценностей российского народа, сформированность нравственного сознания, этического поведения, связанного с практическим применением достижений науки и деятельностью учёного, осознание личного вклада в построение устойчивого будущего; 4) эстетическое воспитание: эстетическое отношение к миру, включая эстетику математических закономерностей, объектов, задач, решений, рассуждений, восприимчивость к математическим аспектам различных видов искусства; 5) физическое воспитание: сформированность умения применять математические знания в интересах здорового и безопасного образа жизни, ответственное отношение к своему здоровью (здоровое питание, сбалансированный режим занятий и отдыха, регулярная физическая активность), физическое совершенствование при занятиях спортивно-оздоровительной деятельностью; 6) трудовое воспитание: готовность к труду, осознание ценности трудолюбия, интерес к различным сферам профессиональной деятельности, связанным с математикой и её приложениями, умение совершать осознанный выбор будущей профессии и реализовывать собственные жизненные планы, готовность и способность к математическому образованию и самообразованию на протяжении всей жизни, готовность к активному участию в решении практических задач математической направленности; 7) экологическое воспитание: сформированность экологической культуры, понимание влияния социальноэкономических процессов на состояние природной и социальной среды, осознание глобального характера экологических проблем, ориентация на применение математических знаний для решения задач в области окружающей среды, планирование поступков и оценки их возможных последствий для окружающей среды; 8) ценности научного познания: сформированность мировоззрения, соответствующего современному уровню развития науки и общественной практики, понимание математической науки как сферы человеческой деятельности, этапов её развития и значимости для развития цивилизации, овладение языком математики и математической культурой как средством познания мира, готовность осуществлять проектную и исследовательскую деятельность индивидуально и в группе. МЕТАПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ Познавательные универсальные учебные действия Базовые логические действия: выявлять и характеризовать существенные признаки математических объектов, понятий, отношений между понятиями, формулировать определения понятий, устанавливать существенный признак классификации, основания для обобщения и сравнения, критерии проводимого анализа; воспринимать, формулировать и преобразовывать суждения: утвердительные и отрицательные, единичные, частные и общие, условные; выявлять математические закономерности, взаимосвязи и противоречия в фактах, данных, наблюдениях и утверждениях, предлагать критерии для выявления закономерностей и противоречий; делать выводы с использованием законов логики, дедуктивных и индуктивных умозаключений, умозаключений по аналогии; проводить самостоятельно доказательства математических утверждений (прямые и от противного), выстраивать аргументацию, приводить примеры и контрпримеры, обосновывать собственные суждения и выводы; выбирать способ решения учебной задачи (сравнивать несколько вариантов решения, выбирать наиболее подходящий с учётом самостоятельно выделенных критериев). Базовые исследовательские действия: использовать вопросы как исследовательский инструмент познания, формулировать вопросы, фиксирующие противоречие, проблему, устанавливать искомое и данное, формировать гипотезу, аргументировать свою позицию, мнение; проводить самостоятельно спланированный эксперимент, исследование по установлению особенностей математического объекта, явления, процесса, выявлению зависимостей между объектами, явлениями, процессами; самостоятельно формулировать обобщения и выводы по результатам проведённого наблюдения, исследования, оценивать достоверность полученных результатов, выводов и обобщений; прогнозировать возможное развитие процесса, а также выдвигать предположения о его развитии в новых условиях. Работа с информацией: выявлять дефициты информации, данных, необходимых для ответа на вопрос и для решения задачи; выбирать информацию из источников различных типов, анализировать, систематизировать и интерпретировать информацию различных видов и форм представления; структурировать информацию, представлять её в различных формах, иллюстрировать графически; оценивать надёжность информации по самостоятельно сформулированным критериям. Коммуникативные универсальные учебные действия Общение: воспринимать и формулировать суждения в соответствии с условиями и целями общения, ясно, точно, грамотно выражать свою точку зрения в устных и письменных текстах, давать пояснения по ходу решения задачи, комментировать полученный результат; в ходе обсуждения задавать вопросы по существу обсуждаемой темы, проблемы, решаемой задачи, высказывать идеи, нацеленные на поиск решения, сопоставлять свои суждения с суждениями других участников диалога, обнаруживать различие и сходство позиций, в корректной форме формулировать разногласия, свои возражения; представлять результаты решения задачи, эксперимента, исследования, проекта, самостоятельно выбирать формат выступления с учётом задач презентации и особенностей аудитории. Регулятивные универсальные учебные действия Самоорганизация: составлять план, алгоритм решения задачи, выбирать способ решения с учётом имеющихся ресурсов и собственных возможностей, аргументировать и корректировать варианты решений с учётом новой информации. Самоконтроль, эмоциональный интеллект: владеть навыками познавательной рефлексии как осознания совершаемых действий и мыслительных процессов, их результатов, владеть способами самопроверки, самоконтроля процесса и результата решения математической задачи; предвидеть трудности, которые могут возникнуть при решении задачи, вносить коррективы в деятельность на основе новых обстоятельств, данных, найденных ошибок, выявленных трудностей; оценивать соответствие результата цели и условиям, объяснять причины достижения или недостижения результатов деятельности, находить ошибку, давать оценку приобретённому опыту. Совместная деятельность: понимать и использовать преимущества командной и индивидуальной работы при решении учебных задач, принимать цель совместной деятельности, планировать организацию совместной работы, распределять виды работ, договариваться, обсуждать процесс и результат работы, обобщать мнения нескольких людей; участвовать в групповых формах работы (обсуждения, обмен мнений, «мозговые штурмы» и иные), выполнять свою часть работы и координировать свои действия с другими членами команды, оценивать качество своего вклада в общий продукт по критериям, сформулированным участниками взаимодействия. ПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ К концу 10 класса обучающийся научится: свободно оперировать основными понятиями стереометрии при решении задач и проведении математических рассуждений; применять аксиомы стереометрии и следствия из них при решении геометрических задач; классифицировать взаимное расположение прямых в пространстве, плоскостей в пространстве, прямых и плоскостей в пространстве; свободно оперировать понятиями, связанными с углами в пространстве: между прямыми в пространстве, между прямой и плоскостью; свободно оперировать понятиями, связанными с многогранниками; свободно распознавать основные виды многогранников (призма, пирамида, прямоугольный параллелепипед, куб); классифицировать многогранники, выбирая основания для классификации; свободно оперировать понятиями, связанными с сечением многогранников плоскостью; выполнять параллельное, центральное и ортогональное проектирование фигур на плоскость, выполнять изображения фигур на плоскости; строить сечения многогранников различными методами, выполнять (выносные) плоские чертежи из рисунков простых объёмных фигур: вид сверху, сбоку, снизу; вычислять площади поверхностей многогранников (призма, пирамида), геометрических тел с применением формул; свободно оперировать понятиями: симметрия в пространстве, центр, ось и плоскость симметрии, центр, ось и плоскость симметрии фигуры; свободно оперировать понятиями, соответствующими векторам и координатам в пространстве; выполнять действия над векторами; решать задачи на доказательство математических отношений и нахождение геометрических величин, применяя известные методы при решении математических задач повышенного и высокого уровня сложности; применять простейшие программные средства и электронно-коммуникационные системы при решении стереометрических задач; извлекать, преобразовывать и интерпретировать информацию о пространственных геометрических фигурах, представленную на чертежах и рисунках; применять полученные знания на практике: сравнивать и анализировать реальные ситуации, применять изученные понятия в процессе поиска решения математически сформулированной проблемы, моделировать реальные ситуации на языке геометрии, исследовать построенные модели с использованием геометрических понятий и теорем, аппарата алгебры, решать практические задачи, связанные с нахождением геометрических величин; иметь представления об основных этапах развития геометрии как составной части фундамента развития технологий. К концу 11 класса обучающийся научится: свободно оперировать понятиями, связанными с цилиндрической, конической и сферической поверхностями, объяснять способы получения; оперировать понятиями, связанными с телами вращения: цилиндром, конусом, сферой и шаром; распознавать тела вращения (цилиндр, конус, сфера и шар) и объяснять способы получения тел вращения; классифицировать взаимное расположение сферы и плоскости; вычислять величины элементов многогранников и тел вращения, объёмы и площади поверхностей многогранников и тел вращения, геометрических тел с применением формул; свободно оперировать понятиями, связанными с комбинациями тел вращения и многогранников: многогранник, вписанный в сферу и описанный около сферы, сфера, вписанная в многогранник или тело вращения; вычислять соотношения между площадями поверхностей и объёмами подобных тел; изображать изучаемые фигуры, выполнять (выносные) плоские чертежи из рисунков простых объёмных фигур: вид сверху, сбоку, снизу, строить сечения тел вращения; извлекать, интерпретировать и преобразовывать информацию о пространственных геометрических фигурах, представленную на чертежах и рисунках; свободно оперировать понятием вектор в пространстве; выполнять операции над векторами; задавать плоскость уравнением в декартовой системе координат; решать геометрические задачи на вычисление углов между прямыми и плоскостями, вычисление расстояний от точки до плоскости, в целом, на применение векторно-координатного метода при решении; свободно оперировать понятиями, связанными с движением в пространстве, знать свойства движений; выполнять изображения многогранников и тел вращения при параллельном переносе, центральной симметрии, зеркальной симметрии, при повороте вокруг прямой, преобразования подобия; строить сечения многогранников и тел вращения: сечения цилиндра (параллельно и перпендикулярно оси), сечения конуса (параллельные основанию и проходящие через вершину), сечения шара; использовать методы построения сечений: метод следов, метод внутреннего проектирования, метод переноса секущей плоскости; доказывать геометрические утверждения; применять геометрические факты для решения стереометрических задач, предполагающих несколько шагов решения, если условия применения заданы в явной и неявной форме; решать задачи на доказательство математических отношений и нахождение геометрических величин; применять программные средства и электронно-коммуникационные системы при решении стереометрических задач; применять полученные знания на практике: сравнивать, анализировать и оценивать реальные ситуации, применять изученные понятия, теоремы, свойства в процессе поиска решения математически сформулированной проблемы, моделировать реальные ситуации на языке геометрии, исследовать построенные модели с использованием геометрических понятий и теорем, аппарата алгебры, решать практические задачи, связанные с нахождением геометрических величин; иметь представления об основных этапах развития геометрии как составной части фундамента развития технологий. ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ 10 КЛАСС Количество часов № п/п Наименование разделов и тем программы Всего Контрольные работы Практич еские работы Электронные (цифровые) образовательные ресурсы 1 Введение в стереометрию 23 1 Российская электронная школа (resh.edu.ru) 2 Взаимное расположение прямых в пространстве 6 1 Российская электронная школа (resh.edu.ru) 3 Параллельность прямых и плоскостей в пространстве 8 Российская электронная школа (resh.edu.ru) 4 Перпендикулярность прямых и плоскостей в пространстве 25 Российская электронная школа (resh.edu.ru) 5 Углы и расстояния 16 1 Российская электронная школа (resh.edu.ru) 6 Многогранники 7 1 Российская электронная школа (resh.edu.ru) 7 Векторы в пространстве 12 8 Повторение, обобщение и систематизация знаний 5 2 102 6 ОБЩЕЕ КОЛИЧЕСТВО ЧАСОВ ПО ПРОГРАММЕ Российская электронная школа (resh.edu.ru) Российская электронная школа (resh.edu.ru) 0 11 КЛАСС Количество часов № п/п Наименование разделов и тем программы Всего Контрольные работы Практические работы Электронные (цифровые) образовательные ресурсы 1 Аналитическая геометрия 15 1 Российская электронная школа (resh.edu.ru) 2 Повторение, обобщение и систематизация знаний 15 1 Российская электронная школа (resh.edu.ru) 3 Объём многогранника 17 1 Российская электронная школа (resh.edu.ru) 4 Тела вращения 24 1 Российская электронная школа (resh.edu.ru) 5 Площади поверхности и объёмы круглых тел 9 1 Российская электронная школа (resh.edu.ru) 6 Движения 5 1 Российская электронная школа (resh.edu.ru) 7 Повторение, обобщение и систематизация знаний 14 2 Российская электронная школа (resh.edu.ru) 99 8 ОБЩЕЕ КОЛИЧЕСТВО ЧАСОВ ПО ПРОГРАММЕ 0 ПОУРОЧНОЕ ПЛАНИРОВАНИЕ 10 КЛАСС № урока Тема урока Количество часов 1 Основные правила изображения на рисунке плоскости, параллельных прямых (отрезков), середины отрезка 1 2 Понятия стереометрии: точка, прямая, плоскость, пространство. Основные правила изображения на рисунке плоскости, параллельных прямых (отрезков), середины отрезка 1 3 Понятия: пересекающиеся плоскости, пересекающиеся прямая и плоскость; полупространство 1 4 Понятия: пересекающиеся плоскости, пересекающиеся прямая и плоскость; полупространство 1 5 Многогранники, изображение простейших пространственных фигур, несуществующих объектов 1 6 Многогранники, изображение простейших пространственных фигур, несуществующих объектов 1 7 Аксиомы стереометрии и первые следствия из них 1 8 Аксиомы стереометрии и первые следствия из них 1 9 Аксиомы стереометрии и первые следствия из них. Способы задания прямых и плоскостей в пространстве. Обозначения прямых и плоскостей 1 10 Изображение сечений пирамиды, куба и призмы, которые проходят через их рёбра. Изображение пересечения полученных плоскостей. Раскрашивание построенных сечений разными цветами 1 11 Изображение сечений пирамиды, куба и призмы, которые проходят через их рёбра. Изображение пересечения полученных плоскостей. Раскрашивание построенных сечений разными цветами 1 12 Изображение сечений пирамиды, куба и призмы, которые проходят через их рёбра. Изображение пересечения полученных плоскостей. Раскрашивание построенных сечений разными цветами 1 13 Изображение сечений пирамиды, куба и призмы, которые проходят через их рёбра. Изображение пересечения полученных плоскостей. Раскрашивание построенных сечений разными цветами 1 14 Метод следов для построения сечений 1 15 Метод следов для построения сечений. Свойства пересечений прямых и плоскостей 1 16 Метод следов для построения сечений. Свойства пересечений прямых и плоскостей 1 17 Построение сечений в пирамиде, кубе по трём точкам на рёбрах. Создание выносных чертежей и запись шагов построения 1 18 Построение сечений в пирамиде, кубе по трём точкам на рёбрах. Создание выносных чертежей и запись шагов построения 1 19 Построение сечений в пирамиде, кубе по трём точкам на рёбрах. Создание выносных чертежей и запись шагов построения 1 20 Построение сечений в пирамиде, кубе по трём точкам на рёбрах. Создание выносных чертежей и запись шагов построения 1 21 Повторение планиметрии: Теорема о пропорциональных отрезках. Подобие треугольников 1 22 Повторение планиметрии: Теорема Менелая. Расчеты в сечениях на выносных чертежах. История развития планиметрии и стереометрии 1 23 Контрольная работа "Аксиомы стереометрии. Сечения" 1 24 Взаимное расположение прямых в пространстве. Скрещивающиеся прямые. Признаки скрещивающихся прямых. Параллельные прямые в пространстве 1 25 Теорема о существовании и единственности прямой параллельной данной прямой, проходящей через точку пространства и не лежащей на данной прямой. Лемма о пересечении параллельных прямых плоскостью 1 26 Параллельность трех прямых. Теорема о трёх параллельных прямых. Теорема о скрещивающихся прямых 1 27 Параллельное проектирование. Основные свойства параллельного проектирования. Изображение разных фигур в параллельной проекции 1 28 Центральная проекция. Угол с сонаправленными сторонами. Угол между прямыми 1 29 Задачи на доказательство и исследование, связанные с расположением прямых в пространстве 1 30 Понятия: параллельность прямой и плоскости в пространстве. Признак параллельности прямой и плоскости. Свойства параллельности прямой и плоскости 1 31 Геометрические задачи на вычисление и доказательство, связанные с параллельностью прямых и 1 плоскостей в пространстве 32 Построение сечения, проходящего через данную прямую на чертеже и параллельного другой прямой. Расчёт отношений 1 33 Параллельная проекция, применение для построения сечений куба и параллелепипеда. Свойства параллелепипеда и призмы 1 34 Параллельные плоскости. Признаки параллельности двух плоскостей 1 35 Теорема о параллельности и единственности плоскости, проходящей через точку, не принадлежащую данной плоскости и следствия из неё 1 36 Свойства параллельных плоскостей: о параллельности прямых пересечения при пересечении двух параллельных плоскостей третьей 1 37 Свойства параллельных плоскостей: об отрезках параллельных прямых, заключённых между параллельными плоскостями; о пересечении прямой с двумя параллельными плоскостями 1 38 Повторение: теорема Пифагора на плоскости 1 39 Повторение: тригонометрия прямоугольного треугольника 1 40 Свойства куба и прямоугольного параллелепипеда 1 41 Вычисление длин отрезков в кубе и прямоугольном параллелепипеде 1 42 Перпендикулярность прямой и плоскости. Признак перпендикулярности прямой и плоскости 1 43 Перпендикулярность прямой и плоскости. Признак перпендикулярности прямой и плоскости 1 44 Теорема о существовании и единственности прямой, проходящей через точку пространства и перпендикулярной к плоскости 1 45 Плоскости и перпендикулярные им прямые в многогранниках 1 46 Плоскости и перпендикулярные им прямые в многогранниках 1 47 Перпендикуляр и наклонная. Построение перпендикуляра из точки на прямую 1 48 Перпендикуляр и наклонная. Построение перпендикуляра из точки на прямую 1 49 Теорема о трёх перпендикулярах (прямая и обратная) 1 50 Теорема о трёх перпендикулярах (прямая и обратная) 1 51 Угол между скрещивающимися прямыми 1 52 Поиск перпендикулярных прямых с помощью перпендикулярных плоскостей 1 53 Ортогональное проектирование 1 54 Построение сечений куба, призмы, правильной пирамиды с помощью ортогональной проекции 1 55 Построение сечений куба, призмы, правильной пирамиды с помощью ортогональной проекции 1 56 Симметрия в пространстве относительно плоскости. Плоскости симметрий в многогранниках 1 57 Признак перпендикулярности прямой и плоскости как следствие симметрии 1 58 Правильные многогранники. Расчёт расстояний от точки до плоскости 1 59 Правильные многогранники. Расчёт расстояний от точки до плоскости 1 60 Способы опустить перпендикуляры: симметрия, сдвиг точки по параллельной прямой 1 61 Сдвиг по непараллельной прямой, изменение расстояний 1 62 Контрольная работа "Взаимное расположение прямых и плоскостей в пространстве" 1 63 Повторение: угол между прямыми на плоскости, тригонометрия в произвольном треугольнике, теорема косинусов 1 64 Повторение: угол между скрещивающимися прямыми в пространстве 1 65 Геометрические методы вычисления угла между прямыми в многогранниках 1 66 Двугранный угол. Свойство линейных углов двугранного угла 1 67 Перпендикулярные плоскости. Свойства взаимно перпендикулярных плоскостей 1 68 Признак перпендикулярности плоскостей; теорема о прямой пересечения двух плоскостей перпендикулярных третьей плоскости 1 69 Прямоугольный параллелепипед; куб; измерения, свойства прямоугольного параллелепипеда 1 70 Теорема о диагонали прямоугольного параллелепипеда и следствие из неё 1 71 Стереометрические и прикладные задачи, связанные со взаимным расположением прямых и плоскости 1 72 Повторение: скрещивающиеся прямые, параллельные плоскости в стандартных многогранниках 1 73 Пара параллельных плоскостей на скрещивающихся прямых, расстояние между скрещивающимися прямыми в простых ситуациях 1 74 Расстояние от точки до плоскости, расстояние от прямой до плоскости 1 75 Вычисление расстояний между скрещивающимися прямыми с помощью перпендикулярной плоскости 1 76 Трёхгранный угол, неравенства для трехгранных углов. Теорема Пифагора, теоремы косинусов и синусов для трёхгранного угла 1 77 Элементы сферической геометрии: геодезические линии на Земле 1 78 Контрольная работа "Углы и расстояния" 1 79 Систематизация знаний "Многогранник и его элементы" 1 80 Пирамида. Виды пирамид. Правильная пирамида 1 81 Призма. Прямая и наклонная призмы. Правильная призма 1 82 Прямой параллелепипед, прямоугольный параллелепипед, куб 1 83 Выпуклые многогранники. Теорема Эйлера 1 84 Выпуклые многогранники. Теорема Эйлера. Правильные и полуправильные многогранники 1 85 Контрольная работа "Многогранники" 1 86 Понятие вектора на плоскости и в пространстве 1 87 Сумма векторов 1 88 Разность векторов 1 89 Правило параллелепипеда 1 90 Умножение вектора на число 1 91 Разложение вектора по базису трёх векторов, не лежащих в одной плоскости 1 92 Скалярное произведение 1 93 Вычисление угла между векторами в пространстве 1 94 Простейшие задачи с векторами 1 95 Простейшие задачи с векторами 1 96 Простейшие задачи с векторами 1 97 Простейшие задачи с векторами 1 98 Обобщение и систематизация знаний 1 99 Обобщение и систематизация знаний 1 100 Итоговая контрольная работа 1 101 Итоговая контрольная работа 1 102 Обобщение и систематизация знаний 1 ОБЩЕЕ КОЛИЧЕСТВО ЧАСОВ ПО ПРОГРАММЕ 102 11 КЛАСС № урока Тема урока Количество часов 1 Повторение темы "Координаты вектора на плоскости и в пространстве" 1 2 Повторение темы "Скалярное произведение векторов" 1 3 Повторение темы "Вычисление угла между векторами в пространстве" 1 4 Повторение темы "Уравнение прямой, проходящей через две точки" 1 5 Уравнение плоскости, нормаль, уравнение плоскости в отрезках 1 6 Уравнение плоскости, нормаль, уравнение плоскости в отрезках 1 7 Векторное произведение 1 8 Линейные неравенства, линейное программирование 1 9 Линейные неравенства, линейное программирование 1 10 Аналитические методы расчёта угла между прямыми в многогранниках 1 11 Аналитические методы расчёта угла между плоскостями в многогранниках 1 12 Формула расстояния от точки до плоскости в координатах 1 13 Нахождение расстояний от точки до плоскости в кубе 1 14 Нахождение расстояний от точки до плоскости в правильной пирамиде 1 15 Контрольная работа "Аналитическая геометрия" 1 16 Сечения многогранников: стандартные многогранники 1 17 Сечения многогранников: метод следов 1 18 Сечения многогранников: стандартные плоскости, пересечения прямых и плоскостей 1 19 Параллельные прямые и плоскости: параллельные сечения 1 20 Параллельные прямые и плоскости: расчёт отношений 1 21 Параллельные прямые и плоскости: углы между скрещивающимися прямыми 1 22 Перпендикулярные прямые и плоскости: стандартные пары перпендикулярных плоскостей и прямых, 1 симметрии многогранников 23 Перпендикулярные прямые и плоскости: теорема о трех перпендикулярах 1 24 Перпендикулярные прямые и плоскости: вычисления длин в многогранниках 1 25 Повторение: площади многоугольников, формулы для площадей, соображения подобия 1 26 Повторение: площади многоугольников, формулы для площадей, соображения подобия 1 27 Повторение: площади многоугольников, формулы для площадей, соображения подобия 1 28 Площади сечений многогранников: площади поверхностей, разрезания на части, соображения подобия 1 29 Площади сечений многогранников: площади поверхностей, разрезания на части, соображения подобия 1 30 Контрольная работа "Повторение: многогранники, сечения многогранников" 1 31 Объём тела. Объем прямоугольного параллелепипеда 1 32 Задачи об удвоении куба, о квадратуре куба; о трисекции угла 1 33 Стереометрические задачи, связанные с объёмом прямоугольного параллелепипеда 1 34 Прикладные задачи, связанные с вычислением объёма прямоугольного параллелепипеда 1 35 Объём прямой призмы 1 36 Стереометрические задачи, связанные с вычислением объёмов прямой призмы 1 37 Прикладные задачи, связанные с объёмом прямой призмы 1 38 Вычисление объёмов тел с помощью определённого интеграла. Объём наклонной призмы 1 39 Вычисление объёмов тел с помощью определённого интеграла. Объём пирамиды 1 40 Формула объёма пирамиды. Отношение объемов пирамид с общим углом 1 41 Формула объёма пирамиды. Отношение объемов пирамид с общим углом 1 42 Стереометрические задачи, связанные с объёмами наклонной призмы 1 43 Стереометрические задачи, связанные с объёмами пирамиды 1 44 Прикладные задачи по теме "Объёмы тел", связанные с объёмом наклонной призмы 1 45 Прикладные задачи по теме "Объёмы тел", связанные с объёмом пирамиды 1 46 Применение объёмов. Вычисление расстояния до плоскости 1 47 Контрольная работа "Объём многогранника" 1 48 Цилиндрическая поверхность, образующие цилиндрической поверхности 1 49 Цилиндр. Прямой круговой цилиндр. Площадь поверхности цилиндра 1 50 Коническая поверхность, образующие конической поверхности. Конус 1 51 Сечение конуса плоскостью, параллельной плоскости основания 1 52 Усечённый конус. Изображение конусов и усечённых конусов 1 53 Площадь боковой поверхности и полной поверхности конуса 1 54 Площадь боковой поверхности и полной поверхности конуса 1 55 Стереометрические задачи на доказательство и вычисление, построением сечений цилиндра, конуса 1 56 Стереометрические задачи на доказательство и вычисление, построением сечений цилиндра, конуса 1 57 Прикладные задачи, связанные с цилиндром 1 58 Прикладные задачи, связанные с цилиндром 1 59 Сфера и шар 1 60 Пересечение сферы и шара с плоскостью. Касание шара и сферы плоскостью. Вид и изображение шара 1 61 Пересечение сферы и шара с плоскостью. Касание шара и сферы плоскостью. Вид и изображение шара 1 62 Уравнение сферы. Площадь сферы и её частей 1 63 Симметрия сферы и шара 1 64 Стереометрические задачи на доказательство и вычисление, связанные со сферой и шаром, построением их сечений плоскостью 1 65 Стереометрические задачи на доказательство и вычисление, связанные со сферой и шаром, построением их сечений плоскостью 1 66 Прикладные задачи, связанные со сферой и шаром 1 67 Повторение: окружность на плоскости, вычисления в окружности, стандартные подобия 1 68 Различные комбинации тел вращения и многогранников 1 69 Задачи по теме "Тела и поверхности вращения" 1 70 Задачи по теме "Тела и поверхности вращения" 1 71 Контрольная работа "Тела и поверхности вращения" 1 72 Объём цилиндра. Теорема об объёме прямого цилиндра 1 73 Вычисление объёмов тел с помощью определённого интеграла. Объём конуса 1 74 Площади боковой и полной поверхности конуса 1 75 Стереометрические задачи, связанные с вычислением объёмов цилиндра, конуса 1 76 Прикладные задачи по теме "Объёмы и площади поверхностей тел" 1 77 Объём шара и шарового сектора. Теорема об объёме шара. Площадь сферы. Стереометрические задачи, связанные с вычислением объёмов шара, шарового сегмента и шарового сектора 1 78 Прикладные задачи по теме "Объёмы тел", связанные с объёмом шара и площадью сферы. Соотношения между площадями поверхностей и объёмами подобных тел 1 79 Подобные тела в пространстве. Изменение объёма при подобии. Стереометрические задачи, связанные с вычислением объёмов тел и площадей поверхностей 1 80 Контрольная работа "Площади поверхности и объёмы круглых тел" 1 81 Движения пространства. Отображения. Движения и равенство фигур. Общие свойства движений 1 82 Виды движений: параллельный перенос, центральная симметрия, зеркальная симметрия, поворот вокруг прямой 1 83 Преобразования подобия. Прямая и сфера Эйлера 1 84 Геометрические задачи на применение движения 1 85 Контрольная работа "Векторы в пространстве" 1 86 Обобщающее повторение 11 понятий и методов курса геометрии 10–11 классов, систематизация знаний: "Параллельность прямых и плоскостей в пространстве" 1 87 Обобщающее повторение 11 понятий и методов курса геометрии 10–11 классов, систематизация знаний: "Векторы в пространстве" 1 88 Обобщающее повторение 11 понятий и методов курса геометрии 10–11 классов, систематизация 1 знаний: "Векторы в пространстве" 89 Обобщающее повторение 11 понятий и методов курса геометрии 10–11 классов, систематизация знаний: "Объем многогранника" 1 90 Обобщающее повторение 11 понятий и методов курса геометрии 10–11 классов, систематизация знаний: "Объем многогранника" 1 91 Обобщающее повторение 11 понятий и методов курса геометрии 10–11 классов, систематизация знаний: "Площади поверхности и объёмы круглых тел" 1 92 Обобщающее повторение 11 понятий и методов курса геометрии 10–11 классов, систематизация знаний: "Площади поверхности и объёмы круглых тел" 1 93 Итоговая контрольная работа 1 94 Итоговая контрольная работа 1 95 Повторение, обобщение и систематизация знаний 1 96 История развития стереометрии как науки и её роль в развитии современных инженерных и компьютерных технологий 1 97 История развития стереометрии как науки и её роль в развитии современных инженерных и компьютерных технологий 1 98 История развития стереометрии как науки и её роль в развитии современных инженерных и компьютерных технологий 1 99 История развития стереометрии как науки и её роль в развитии современных инженерных и компьютерных технологий 1 ОБЩЕЕ КОЛИЧЕСТВО ЧАСОВ ПО ПРОГРАММЕ 99 УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ОБЯЗАТЕЛЬНЫЕ УЧЕБНЫЕ МАТЕРИАЛЫ ДЛЯ УЧЕНИКА Геометрия, 10-11 классы/ Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б. и другие, Акционерное общество «Издательство «Просвещение» МЕТОДИЧЕСКИЕ МАТЕРИАЛЫ ДЛЯ УЧИТЕЛЯ - Методические рекомендации к учебнику Атанасян Л.С. 10-11 классы; - Поурочное планирование к учебнику Атанасян Л.С. 10-11 классы ЦИФРОВЫЕ ОБРАЗОВАТЕЛЬНЫЕ РЕСУРСЫ И РЕСУРСЫ СЕТИ ИНТЕРНЕТ Российская электронная школа (resh.edu.ru)